# Soft photon measurement ~present and future~

Takao Sakaguchi (BNL) with Gabor David, Ralf Rapp and Lijuan Ruan

- Soft photons = photons not from decay from hadrons or hard scattering
  - Emission strength (rate) reaches to the heart of the microscopic interactions in the medium
  - inverse slope closely related to temperature profile and radial flow
- Provide unique information but historically always took significantly longer time to measure than other QGP signals
- Measurement methods
  - Calorimetric measurement of real photons
    - Limited precision at low pT
  - e+e- external conversion
    - Precise down to very low pT, but requires huge statistics
    - Only proven way to access yield/flow below 1GeV/c
  - e+e- internal conversion
    - important cross-check, but needs statistics and has an irreducible lower limit in pT



### Recent status and results

### Experimental side

- Measurement of spectra has been performed down to pT=0.5GeV/c
- Inverse slope of the spectra is 220MeV, which is consistent with virtual photon analysis
- v2/v3 has been measured
  - v3 is positive. Hydrodynamical process is dominant (magnetic field effect has v3=0)

#### Theoretical side

- Large v2 (build up in the later stage) has not been consistent with large yield (build up in early stage)
- Recent works suggested that the high effective temperature come from around Tc plus blueshift.
  - Phys. Rev. C 84, 054906 (2011)
  - Phys. Rev. C 89, 044910 (2014)
- Hadron-gas interaction is a non-negligible contributions to the rates
- Maybe strongest emissivity around Tc
- Yield/v2 puzzle is converging?

#### Inverse slope vs photon production time



#### Direct photon v2 in Au+Au, 20-40%



#### Direct photon v3 in Au+Au, 20-40%



## Future prospects and needs

- Precise measurement of both spectra and vn are essential for understanding photons originating from the medium
  - e.g. recently it turned out that the vn ratios help
- **Future** measurement
  - Temperature and flow from both photons and intermediate mass dileptons
  - Running at other cms energy may help (62GeV, etc.)
    - Rate and flow give another constraint to models
  - HBT: the only "foolproof" way to get preequilibrium size and shape, also (at lower qT), the safest way to get the size of the medium
- Photon measurement is extremely difficult
  - Due to the experimental challenge, it took longer to meet the required precision (historically true for all photon-related experiments)
  - Need more time and detailed study of photon production  $\rightarrow$  should be carried onto the next generation research
- A theorist's comment: a realistic emissivity (rate) is certainly as important as a realistic space-time evolution.

#### Lines: arXiv:1403.7558 [nucl-th]





